Exercise 20

Compute Δy and $d y$ for the given values of x and $d x=\Delta x$. Then sketch a diagram like Figure 5 showing the line segments with lengths $d x, d y$, and Δy.

$$
y=x-x^{3}, \quad x=0, \quad \Delta x=-0.3
$$

Solution

Compute the derivative of y.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(x-x^{3}\right) \\
& =1-3 x^{2}
\end{aligned}
$$

Consequently, the differential of $y=x-x^{3}$ is

$$
d y=\left(1-3 x^{2}\right) d x
$$

so when $x=0$ and $\Delta x=d x=-0.3$,

$$
\begin{aligned}
d y & =\left[1-3(0)^{2}\right](-0.3)=-0.3 \\
\Delta y & =y(0-0.3)-y(0)=\left[(0-0.3)-(0-0.3)^{3}\right]-\left[(0)-(0)^{3}\right]=-0.273
\end{aligned}
$$

The function is plotted below along with its tangent line at $x=0$.

